SIWW 2022

Accelerated Startup of PN/A Biofilm in ZeeNAMMOX[™] without Anammox Inoculation

Zebo Long John Ireland Jeff Peeters Sylvain Donnaz Neil Hu Gabriel Kicsi Han Zhuang

4/19/2022

Concerning and the state of the second state

Summary

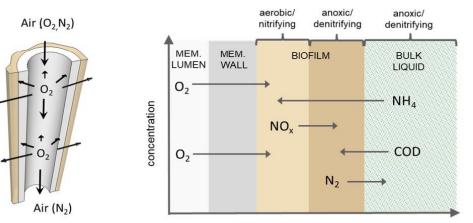
1. MABR Refresher

Process Basics/ZeeLung/Current Use

2. PN/A Refresher

PN/A vs. Conv. SND / PN/A in Sidestream/ PN/A w MABR

3. ZeeNAMMOX Process

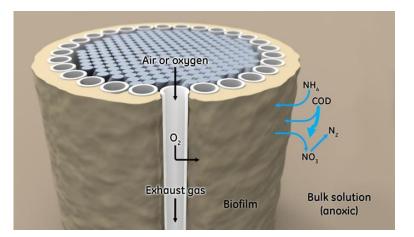

Pilots Overview/Pilots Startup Results/ Biowin Simulation

MABR Refresher Process Basics/ZeeLung/Current Use

MABR Refresher Process Basics

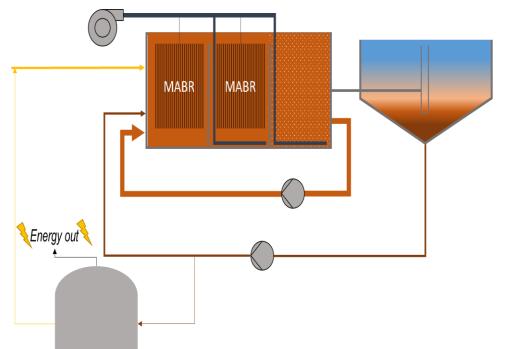
distance from attachment surface

- membrane aerated biofilm reactor MABR
- media-supported biofilm with its own built-in
 O₂ supply
- counter-diffusional biofilm
- Aerobic capabilities in anoxic conditions SND


MABR Refresher ZeeLung

ZeeLung cord ZeeLung module

ZeeLung cassette



Highest efficiency of O₂ transfer by Diffusion into a biofilm

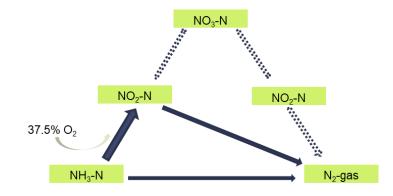
MABR Refresher Current Use

- MABR mainstream energy efficient intensification
- Increase of biomass inventory
- simultaneous nitrification & denitrification (SND)
- limiting or eliminating internal recycle
- Mainstream MABR kinetics driven by NH₃ limitation within the biofilm

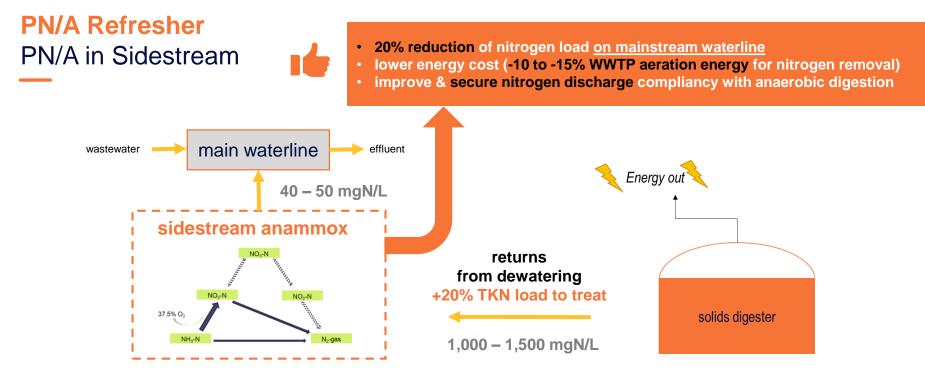
2. PN/A Refresher PN/A vs. Conv. SND / PN/A w MABR

@suez

PN/A Refresher PN/A vs. Conventional SND


Conventional Nitrification/Denitrification Cycle: PAIN

- N removal requires large bioreactor volumes... high capex
- N removal is energy intensive (O₂) & requires carbon...high opex


NO₃-N 25% O₂ NO₂-N NO₃-N NO₂-N NO

Partial nitritation & deammonification: GAIN

- N removal in reduced reactor volume...lower capex
- N removal with reduced energy & C demand....lower opex
- Simplicity & reliability

- Existing Technologies
 - efficient Pathway
 - inefficient oxygen delivery
 - complex operation & control

But

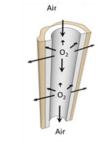
ZeeNAMMOX process principle & benefits

Benefits

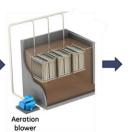
Gas control analyzers

- · reliable and accurate
- strong NOB repression

Simple process control


- direct supply of oxygen to biofilm -(no influence of poor centrate quality)
- reliable lever for NOB suppression
- minimal intervention required

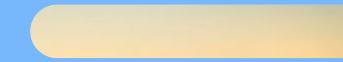
Flow through with high TSS resiliency



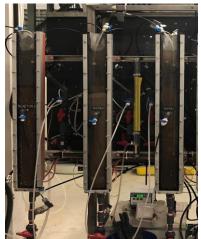
DO Gradient NH4⁺ NO2⁻ NH4⁺ NO3⁻ & N2

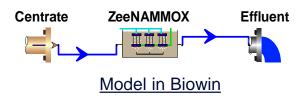
counter-diffusion biofilm favours growth of AOB and AMX in biofilm

low-energy O₂ transfer via gas-transfer membrane

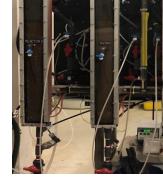

simple one-stage process

3. ZeeNAMMOX Process


Pilots Overview/Pilots Startup Results/Biowin Simulation



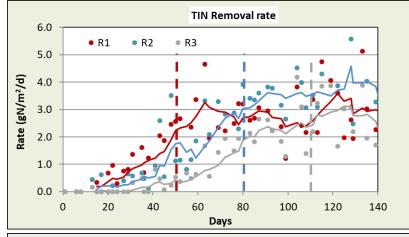
ZeeNAMMOX Process Pilots Overview

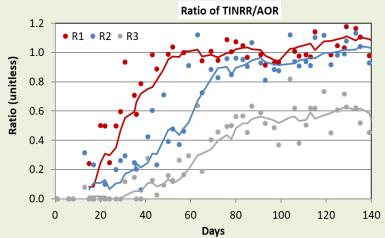


Full-scale ZeeNAMMOX Demo

suez

- Lab-scale Pilots (>3 years):
 - 3 reactors in parallel for concept proof
- Full-scale Demo (startup):
 - Validate concept using full-scale system under field conditions
- Simulation in Biowin:
 - Dynamic simulation of pilot systems, • sensitivity study, and process design

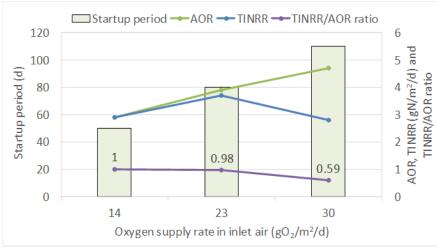



Lab-scale ZeeNAMMOX Pilots: R1, R2, R3

ZeeNAMMOX Process Lab Pilot Results

Reactor	Startup (days)	TINRR after startup (gN/m²/d)	TINRR/AOR ratio after startup
R1	50	2.9	1
R2	80	3.7	0.98
R3	110	2.8	0.59

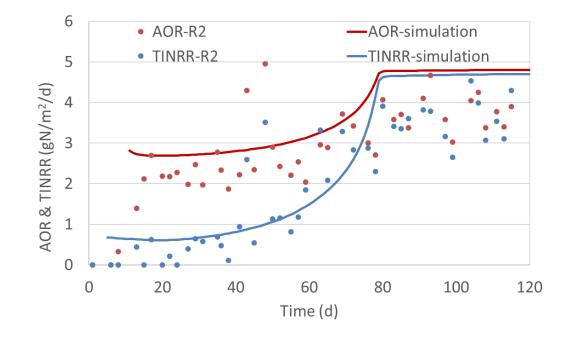
- Only nitrifying sludge was seeded at the beginning of the startup.
- Only oxygen supply conditions were different.



Quick Startup, high rate removals at 100% NOB suppression

ZeeNAMMOX process Lab Pilot Results

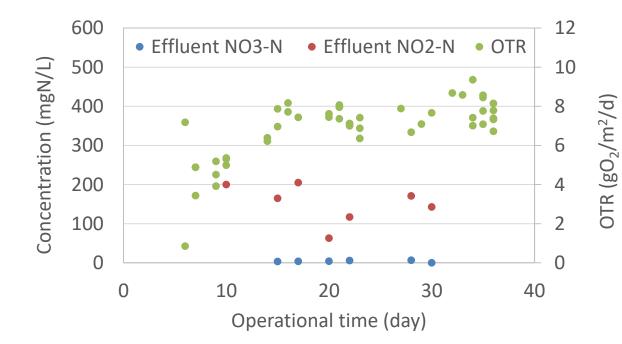
How Oxygen Supply Rate Impacts Startup Period



- <u>Startup period is shorter</u> at lower oxygen supply rate (OSR)
- Lower OSR results in shorter O₂ penetration depth
- Shorter O₂ penetration would lead to <u>better Anammox</u> <u>growth</u>
- <u>AOR increases</u> with Mass-inlet-O₂
- TINRR reaches a peak within the same range of M-inlet-O₂
- Optimal M-inlet- O_2 might be higher than 23 g O_2 /m²/d

ZeeNAMMOX Process Simulation in Biowin

Accelerated Startup without Anammox Seeding in R2



Simulation conditions:

- Anammox in influent: default value
- μ_{max} : 0.05 1/d
- Boundary thickness: 200 µm
- Detachment: default value
- Other parameters: minor changes

PUB ZeeNAMMOX demo startup... showing strong NOB repression...

- gradual increase in OTR
- rapid establishment of AOB biofilm
- complete NOB suppression
- Anammox activity to be established...

ZeeNAMMOX process Summary

- <u>PN/A is well established</u> for N removal in side-stream application
- Existing solutions are more complex to operate and control, use inefficient O₂ delivery, show fragilities
- MABR enabled PN/A is simple & super energy-efficient (ZeeNAMMOX)
- Lab scale pilot & simulation
 - ZeeNAMMOX allows to speed-up anammox biomass growth
 - 50 days start-up was achieved with ZeeNAMMOX without Anammox inoculation
 - <u>gas control</u> of oxygen supply rate (OSR) makes ZeeNAMMOX <u>a unique solution to speed-up</u> sidestream anammox growth

Demo Scale ZeeNAMMOX plant is under start-up stage at PUB site

ZeeNAMMOX process Value Proposition

- ⇒ ENERGY << 70% COMPARED TO GRANULAR & MBBR....LOWER OPEX
- ⇒ BIOREACTOR VOLUME >20% SMALLER THAN GRANULAR..... LOWER CAPEX
- \Rightarrow SIMPLE PROCESS... O₂ SUPPLY PROVIDES SELECTION PRESSURE
- ⇒ RESILIENT PROCESS... ANAMMOX BACTERIA RETAINED IN BIOFILM
- ⇒ N₂O REDUCTION... POTENTIALLY UP TO 90% LESS THAN OTHER PN/A TECHNOLOGIES
- **START-UP WITHOUT ANAMMOX SEEDING EXPECTED BETWEEN 50 90 DAYS**

	Granular	MBBR	ZeeNAMMOX
energy, kWh/kg-N _{removed}	1.4	1.5	0.4
volume, kg-N _{removed} /m ³ /d	0.4-0.8*	0.5-1.0*	1.0

*reported ranges

THANK YOU

